
  

Towards Context-Aware Cross-Device 
User Interfaces in the Wild 

 

Abstract 
In recent years a number of frameworks for easing  
design and development of cross-device user interfaces 
have been put forward, mainly in research contexts. In 
general, they provide support for connection 
management, data synchronization, and user interface 
distribution. However, the applications that can be 
obtained can be accessed from a wide variety of 
contexts of use that vary in terms of available devices 
and connectivity, surrounding environment, user 
preferences and abilities, and social relationships. Thus, 

one of the main limitations in the adoption of such 
applications in the wild is the difficulty to customize 
them for different needs in such diverse contexts. This 
position paper indicates and discusses the issues that 
should be addressed for this purpose and intrdouces 
possible approaches to solve them. 

Author Keywords 
Cross-device user interfaces, Context of use, End-user 
development.  

ACM Classification Keywords 
H.5.2 [Information interfaces and presentation (e.g., 
HCI)]: User Interfaces - Input devices and strategies.  

Introduction 
The increasing availability of various types of devices in 
our daily life is often a missed opportunity since current 
applications are limited in supporting seamless task 
performance across them. Users often perceive device 
fragmentation around them rather than an ecosystem 
of devices that supports their activities. In order to 
address such issues a number of frameworks, 
platforms, and authoring environments have been 
proposed, mainly in research environment. The goal is 
to facilitate design and development of multi-device 
user interfaces. We can distinguish various types of 
multi-device user interfaces depending on the features 
that they support: migratory user interfaces are able to 

Paste the appropriate copyright/license statement here.  ACM now 
supports three different publication options:  

• ACM copyright: ACM holds the copyright on the work.  This is the 
historical approach. 

• License: The author(s) retain copyright, but ACM receives an 
exclusive publication license. 

• Open Access: The author(s) wish to pay for the work to be open 
access.  The additional fee must be paid to ACM. 

This text field is large enough to hold the appropriate release statement 
assuming it is single-spaced in Verdana 7 point font.  Please do not 
change the size of this text box. 
Each submission will be assigned a unique DOI string to be included here. 
 

Fabio Paternò, Giuseppe Ghiani, Marco Manca 
CNR-ISTI, HIIS Laboratory 
Via Moruzzi 1, 56124 Pisa, Italy 
fabio.paterno@isti.cnr.it 
 



 

dynamically migrate from one device to another in 
order to follow users’ movements while preserving their 
state; distributed user interfaces allow users to interact  
with an application through multiple devices at the 
same time; cross-device user interfaces are distributed 
user interfaces, with the additional capability to 
synchronise their state, so that the interactions through 
some element in one device update the state of the 
corresponding elements (if any) in another device. 
Such categories are not mutually exclusive, so for 
example it is possible to have user interfaces that are 
both migratory and cross-device. 

Cross-device Frameworks and Authoring 
Environments 
In recent years some frameworks that provide useful 
support for developing cross-device user interfaces 
have been proposed. The proximity toolkit [5] simplifies 
the exploration of interaction techniques by supplying 
fine-grained proxemics information between people, 
portable devices, large interactive surfaces, and other 
non-digital objects in a room-sized environment. We 
have designed a framework supporting user interface 
distribution in multi-device and multi-user 
environments with dynamically migrating engines has 
been proposed [2]. It does not require a fixed server to 
manage the distribution. The elements of the UI can be 
distributed by specifying specific device(s), group(s) of 
devices, specific user(s), and groups of users according 
to roles. Panelrama [7] is a solution able to categorize 
device characteristics and dynamically change UI 
allocation to best-fit devices. For this purpose, this 
framework lets developers to specify the suitability of 
panels to different types of devices. The increasing use 
of wearables in the context of cross-device user 
interfaces has been addressed by Weave [1], a 

framework for developers to create cross-device 
wearable interaction by scripting. It provides a set of 
JavaScript- based APIs to easily distribute UI output 
and combine sensing events and user input across 
mobile and wearable devices. Other cross-device 
frameworks involving smartwatches have been 
proposed (e.g. [4]). In addition to frameworks, also 
some authoring environment to ease the development 
of cross-device  user interfaces has been proposed. An 
example is XDStudio [6], which supports two 
complementary authoring modes: simulated and on-
device. In the former mode, authoring is carried out on 
a single device in which the user interfaces distributed 
are simulated. In the latter mode, design and 
development actually takes place on the target devices 
themselves. However, this type of authoring 
environment does not provide support for specifying 
context-dependent behavior. This aspect has been 
addressed by our context-aware authoring environment 
[3], which supports development of user interfaces able 
to adapt to the various types of contextual events (that 
can be related to users, devices, environments, and 
social relationships), with the possibility of distributing 
the user interface elements across multiple devices. 
The context-dependent behavior is modelled through 
trigger / action rules (an example tool for editing them 
is in Fig.1), and can even be applied to extend the 
capabilities of Web applications that were not originally 
designed to be context-aware. 

An Architecture for Context-aware Cross-
device User Interfaces 
In order to correctly execute the applications according 
to the adaptation rules specified it is necessary to have 
a specific architectural support at run-time. The main 
goals of such support are to manage and apply the user 

Figure 1  Tool for editing trigger 
action  rules 



 

interface adaptation or distribution rules, and detect 
the events that trigger their performance. Such run-
time support exploits the functionalities of three 
components: the context manager, the adaptation 
engine, and the distribution manager. The context 
manager is composed of a context server and a set of 
external modules delegated to monitor relevant 
parameters of the context of use (e.g. environmental 
noise, device coordinates, user physical activity).  

The purpose of the context manager is to detect 
contextual events and inform the adaptation engine, 
which stores and manages the contextual rules, and 
requests changes in the cross-device user interface 
according to the triggered rules. The distribution 
manager  handles user interfaces distributed across 
multiple devices in order to allow dynamic migration of 
components and keep their state synchronized. Figure 

2 shows how such components interact with each 
other. The adaptation engine subscribes to the context 
model manager in order to be informed of the 
occurrence of the events relevant for the rules 
associated with the active applications. When one or 
more of such events occur, the adaptation engine sends 
the actions to the applications in order to perform the 
corresponding changes. Such update commands are 
interpreted by the scripts included in the application by 
the authoring environment. They can modify properties 
of user interface elements or content, activate functions 
or navigation, and change the distribution of some user 
interface parts across devices. In the latter case the 
adaptation engine can directly send the corresponding 
command to the distribution manager, which notifies 
the involved devices. Such distribution manager 
contains the current distribution profile, which indicates 
how the various parts of the user interface are 
currently distributed across the devices that have 
subscribed to the environment. A distribution command 
mainly determines whether a user interface element or 
the elements included in a container should be visible 
or not on one specific device or a group of devices that 
have the same role or on all devices of a given 
platform. 

Issues for Deployment in the Wild 
The approach to context-aware cross-device user 
interfaces is general and can be deployed for a wide 
variety of applications (for example smart retail, 
museums, smart cities, e-learning, ...). For this 
purpose various aspects should be considered. 

Interoperability.  

We need the possibility to operate on various types of 
devices (smartwatches, smartphones, tablets, 

Figure 2  Architecture for Context-aware Cross-device User Interfaces. 



 

desktops, public displays, ..) from various vendors. 
Only Web applications can be accessed through almost 
all of them with limited effort. However, the run-time 
supporting the cross-device user interfaces should be 
able to work even when network connections to remote 
external Web servers is not possible (a possible solution 
is described in [2]). This means that the underlying 
architecture should be able to create peer-to-peer 
organization amongst the involved devices. 

End-user development 

In the end only the users know the best way to 
configure their cross-device user interfaces in their 
specific contexts of use, thus we need to provide them 
with authoring environments and customization tools 
that allow them to directly specify the contextual rules 
even if they do not know how the underlying 
technology works. For this purpose the use of subset of 
natural language to indicate the desired behaviour with 
familiar, domain-dependent terms can be effective. 

Flexibility 

The control on the cross device user interface by 
developers and users should be able to address various 
granularity levels when allocating or dynamically 
changing which user interface parts should be in each 
device. We can identify four possible granularity levels: 
some distribution changes can involve the entire user 
interface, others can only involve groups of elements, 
or be limited to single user interface elements (e.g. a 
list or a text input), or even parts of single elements 
(e.g. their prompt or feedback). 

Modalities 

Some approaches only consider graphical cross-device 
user interfaces but natural interaction can be achieved 
if the associated environments are also able to support 

other various modalities that users can exploit 
depending on the context (vocal, gestural, graphical, 
…) in an integrated manner. 

Mixed-initiative Triggers 

The changes in the configuration of the cross-device 
user interface can be made on explicit request through 
customization tools or triggered automatically by the 
context-dependent rules. In the latter case it is still 
important to make users aware when the changes 
occur, with also the possibility to reject them if they are 
not deemed useful at a given time. 

 

References 
1. Chi, P. and Li, Y. 2015. Weave: Scripting Cross-

Device Wearable Interaction. CHI 2015, ACM 
2. Frosini, L. and Paternò, F. 2014. User Interface 

Distribution in Multi-Device and Multi-User 
Environments with Dynamically Migrating Engines. 
Proceedings of EICS 2014, ACM, pp. 55-64. 

3. Ghiani G. Manca M. Paternò F., Authoring Context-
dependent Cross-device User Interfaces based on 
Trigger/Action Rules, In MUM2015, pp. 313-322. 

4. Houben, S., and Marquardt, N. 2015. 
WatchConnect: A Toolkit for Prototyping 
Smartwatch-Centric Cross-Device Applications. 
Proceedings of CHI 2015, ACM, pp. 1247-1256. 

5. Marquardt, et al.. 2011. The proximity toolkit: 
prototyping proxemic interactions in ubiquitous 
computing ecologies. UIST 2011, pp. 315-326. 

6. Nebeling, M., Mintsi, T., Husmann, M., Norrie, M. C. 
2014. Interactive development of cross-device user 
interfaces. In CHI 2014, ACM, pp. 2793-2802. 

7. Yang, J. and Wigdor, D. 2014. Panelrama: enabling 
easy specification of cross-device web applications. 
In Proceedings of CHI 2014, ACM, pp. 2783-2792. 


